H28 都市防災論:期末試験,解答は、明瞭かつ丁寧に記述すること。

氏名: 模範解答

問題	ĒΑ:	各設問の		に最も	適切な	用語/説	明/数值	を記入	せよ(数値の	場合	は単位	を明記)。		
1.	であれ	被害の形態 る。たと る。一方 った地盤の	えば、ナでは、ナ	也震発生 也面が打	主によっ 揺れるこ	て地盤とで、	振動を	引き起	こされ	、こオ	によ	り建物	が揺れ		とが重要 被害が発 】	
2.	このも	物の応答角 場合、1覧 つの要素 <i>l</i>	質点系*	モデルに	は、減衰	-								⁺ ること	が多い。 】	
3.	計	構造物はえ 】が主 び【 道 に	流とな	ってい	る。示	方書・扌	旨針類の	代表事							同解説、	
	時間以	津波は比 上になる : 十秒程 原	ことも	あり、	波長は	【数百	š km		】に及							
鋼机	反巻き	耐震補強立てがあたもので	る。繊	維シー	ト巻き立	とてでは									て 】 、 誰を結合材	
剛技	妄され	耐震構造 た梁と柱 造である	にて構	成され	る構造刑	形式であ	らる。一	方、【	壁	式構	造形式	ť			】は、 】は有効 :がある。	
問題	围B:	次の用語 [。]	を英語に	こ直せ。	活字体	にて明明	尞に解答	するこ	と。							
<u>液</u> 壮	大化:	Soil	Liqu	<u>efacti</u>	on	`	設計基準	售:	Desi	gn C	<u>ode</u>			`		
<u>減災</u>	€ : D	isaster l	Reduc	tion, l	<u>Disaste</u>	er Mit	igation	<u>ı</u> ,	性能認	計:]	Perfo	ormai	nce-ba	sed De	esign	
鉄角	第コン	クリート	:	Reinfo	orced (Concre	te									

問題 C: 次の各設問には、必ず間違いが一つある。間違いの箇所を○で囲んで、正しい用語/数値/説明を 【 】内に記せ。

- 1. 自助とは、自分自身や家族が取り組む防災対策で、企業の防災対策も広い意味で自助と言える。共助は、近隣や地域で取り組む防災対策。災害発生直後には公共機関による救助は届かないため、地域での助け合いが必要になる。公助は、公的機関が提供する防災対策である。兵庫県南部地震においては、倒壊家屋からの人命の救出など、公助の重要性が浮き彫りになった。
 - 2. 津波被害の想定に際しては、2段階の津波レベルが設定される。「比較的頻度の高い津波」は、数十年~数百年に一回程度発生する津波で、従来から海岸保全施設等の建設で想定されていたものである。一方「最大クラスの津波」は<u>数千年~数万年</u>に一回程度発生する津波で、住民の避難など、人命を守ることが最重点である。

 【 数百年~千年 】
 - 3. 地震時の構造物(1質点系モデル)の応答は、その固有周期にて振動する。固有周期はそのモデルの質量と剛性によって決まるが、質量が大きいほど、<u>剛性が大きいほど</u>、周期は長くなる(長周期となる)。 **剛性が小さいほど** 】
 - 4. 建物の代表的な耐震技術は、免震技術、制振技術、耐震構造の3つに分類される。制振構造は、構造 体内部の制振装置によって構造物の応答を低減させるもの。免震構造は、免震装置により、免震層上 部の揺れを軽減するもので、その構造は、<u>耐震材</u>、減衰材、支承材の各機能を有する。

【 復元材 】

- 5. 東京都では、東京湾北部地震(M7.3), 元禄関東地震(M8.2), 多摩直下地震(M7.3)をシナリオ地震として採用し、被害想定を実施している。このうち、人的被害(死者)は、元禄関東地震で5,900人、東京湾北部地震で9,700人と想定している。ライフラインの被害(ガス、水道、<u>道路閉鎖</u>)についても被害想定が行われている。【**電力**】
- 6. 津波被害については、被害の分類と形態を関連して整理することが重要である。たとえば、家屋の被害では、津波による波力・流水力・<u>渦巻き力</u>などが原因となっている。また、ライフラインの被害では、上下水道、電力、通信の被害が挙げられる。人命の被害形態については、溺死に加えて、漂流物による打撲・骨折なども挙げられる。【**浮力**】
- 7. 道路橋示方書によると、A 種の橋(重要度が標準的な橋)の場合、レベル 1 地震動に対して耐震性能 1 を満足する必要があり、レベル 2 地震動に対しては、耐震性能 2 を満足する必要がある。なお、耐震性能 1 とは、「地震によって健全性を損なわない性能」、を意味する。

【 耐震性能3